Stepper Motors &
Controller
Last updated on
Tuesday, September 19, 2023 04:14:14 PM
Mountain US Time Zone
HOME
Couplers,
Cables,
Stepper Mounting,
4th Axis,
Stepper Controller,
Dual Control
Couplers
Each coupler was modified to include an 8-32 set screw
(with
a green nylon locking insert) that engages the
shaft flat.
The tips were diamond ground
flat.
The set screw will
spread the slit so I tighten the clamping cap-head bolt first.
Stepper motors shown with a Taig NEMA 23
mount &
couplers.
305oz-in unipolar rating,
4.2v, 3A, 200 steps/revolution, 3.2mH.
Dual
1/4"
diameter shafts (with flats) are 7/8" & 5/8" long.
A Taig NEMA 23 stepper-motor mount
screwed onto the lead screw boss.
The ring clamps the split housing
to grip the
fine threads.
Cables
Eight-wire stepper motor leads with 6-pin
(crimped &
soldered) Molex connected
cables.
Black
protective sheath removed from one of
the stepper motors. Pieces of heat
shrink
hold the wire bundles.
Stepper Mounting
Nylon coupling pins.
Coupling pins just engaged.
Mach3 stepper setup for all axes: 200 steps/motor
rev x 4
4th Axis
These pin out labels were added so they could be
Note the small gap between the couplers.
Screw the mount in & out to adjust the coupler gap.
Do not over tighten the motor clamping plate & ring.
Mounted X-axis stepper motor.
Mounted Y-axis stepper motor.
Mounted Z-axis stepper motor.
Connector & strain-relief clamp
for the Z-axis stepper motor cable.
(1/4 step) x 20 TPI lead-screw pitch = 16,000 steps/inch.
305oz-in motors are quite powerful given the scale of the Taig
machine. They allow
good split-nut clamping pressures &
fast transition speeds when considering the relatively short
distances involved & working in metal on this machine.
CNC rotary table with 305oz-in stepper motor.
I see
no
difference in the amount of backlash between
this & their regular table. Note the addition of a guide
plate on the back
(or front) edge of the mounting plate.
My stepper setup for Mach3's fourth, A-axis: 200 steps/motor
rev x 4 (1/4
stepping) / 5 deg/table rev = 160 steps/ deg
Sherline's super rigid/precise stepper-motor mount.
Indicate the rotary table face by performing
adjustments both
horizontally & vertically.
Stepper Controller
Original Controller &
Redesigned Panel
Milling the panel on the
RF-25 mill. The open-slot area exceeds
the
original, 10-hole design area. Original
panel layout drawing.
PacTec Triad
Stepper Motor Basics
The pin out terminal strips pass through & can be
directly connected
to the PCB inside the case.
Adding the breakout board opto-isolated these connections.
Unpopulated, 4-axes stepper-motor controller
PCB.
Ethernet is now the preferred method of CN control.
The LPT approach is now obsolete & not recommended.
Populated PCB. 4-40 threads were
tapped for
the heat-sink screws thus no nuts were needed.
In use, the
pull-up resistors were problematic &
were removed from the board. An opto-isolation
breakout board
is a far better approach.
Heat-sink compound was thinly
applied to the driver chips.
Note (4) metal tubes were used
to increase fan
mount rigidity. A green LED was incorporated into
the 2KΩ bleeder-resistor
circuit. Molex receptacles
are snapped into the enclosure's back panel.
An extra 110VAC cord strain relief
clamp was
also added. Note the terminal block connections
passing through the rear panel. I leave
all
J4 jumpers ON so the motors do not idle down.
I have found that the stepper motors can loose some
steps after powering-up from
the idle-down state.
When powered down, the green LED dims as the
current
bleeds off. It extinguishes in a few minutes.
Extra rubber feet were attached directly
under the 8 lb
transformer mounts to eliminate any case distortion.
Transformer Triad Magnetics
The horizontal air vents have a nice look.
The table below shows the LPT1 motor
outputs for the PCB & the various
Mach3 I/O functions all of which are interfaced
through the
opto-isolated breakout board.
LPT1 PIN I/O
PIN
#
FUNCTION
1 - Out
Safety Charge Pump
2 - Out
X Direction
3 - Out
X Step
4 - Out
Y Direction
5 - Out
Y Step
6 - Out
Z Direction
7 - Out
Z Step
8 - Out
A Direction
9 - Out
A Step
10 - In
Limits
11 - In
Mill Tachometer
12 - In
3D Digitizing Probe
13 - In
E-stops
14 - Out
-
15 - In
Spindle Index
16 - Out
Spindle
Motor
17 - Out
Air/Mist/Vacuum
18 - 25
Ground
seen when the unit is
underneath the bench. The PCB
pin-outs (10, 11, 12,
13, 15, have pull-up resistors &
1, 14, 16, 17 do not, plus GND) are connected to the
back-panel terminal blocks (OEM design).
The pull-up
resistors interfered with the C1 breakout board control
logic so I removed
them from the stepper-motor circuit.
These I/O can be used as extension/access to an
enclosed breakout board.
Since they are not opto-isolated,
I am not using these I/O terminals; removed
in
the redesigned panel. Below, note the strain relief
clamp (lower right) where the power cord enters.
Dual Control
Redesigned & rewired stepper motor control panel
to provide dual, switchable X &
Z Axes outputs.
New panel design with switched
X & Z stepper outputs
to control either the Taig Micro Lathe or Micro Mill.
Drilled & tapped the milled wood base for multiple 10-32,
100 deg, flathead screws, to
hold the plastic panel.
The top of the panel aligns against the vise's solid jaw.
For each axis (X & Z)
two, 3PDT, 6A switches select
the six stepper motor wires between output
sockets.
The center, common switch contacts are connected
to the
stepper board outputs.
The two (left & right)
banks of switched contacts are connected to
the Molex socket pins.
Switching schematic.
Left & right side switch wires loop over to right & left
sockets to keep the front panel toggle positions correct.
Four, switch-lever positions are thrown either left towards
the Lathe (ZL & XL) or
right
towards the Mill (ZM & XM).
Not coincidentally, the lathe is on the left side of the
bench & the mill is on
the right side of the bench, too.
This switching approach saves having to buy another stepper
board/power
supply/enclosure realizing significant savings.
WARNING: DO
NOT SWITCH MOTORS
CIRCUITS WHEN THE POWER IS ON.
TURN SYSTEM OFF THEN
WAIT A MINIMUM OF
3 MINUTES
BEFORE SWITCHING MOTORS.
The lathe uses 3A motors, same as the mill, so all
stepper
board amperage settings are set at 0.42 VDC.
The
new panel design has much
tighter tolerances
for the snap-in Molex sockets than the
first design.
The larger stepper motor is for the
carriage & the
medium-sized motor is for the cross slide; both are 3A.
The eight motor wires are wired into six-pin,
Molex sockets. The cables are 18
gauge.
The Molex pins are both crimped &
soldered.
The wires were looped to ease
installation.
Couplers,
Cables,
Stepper Mounting,
4th Axis,
Stepper Controller,
Dual Control